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Flow of particles in industry

Figure 1: Paper industry (upper left) ; Fiber-reinforced concrete (upper right) ; Paris (2014) (middle)
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Flow of particles in nature

Figure 2: Stephanopyxis nipponica (source: Phycokey,
University of New Hampshire) ; Langmuir circulation (source:
Tejada-Martinez et al. (Phys. Scr., 2013))

Figure 3: Eyjafjöll, Island (source: British Met Office (2010))
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Sedimentation of cloud of particles Context

Part 1

Sedimentation of cloud of particles in a
vortical flow
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Sedimentation of cloud of particles Context

Collective dynamics: viscous regime (Rea ∼ 10−4)

Figure 4: Flow produced by a cloud of
particles (source: Metzger, B. and Guazzelli,
E. (2008), Reflets de la physique)

Figure 5: Snapshots of a cloud of particles settling in a quiescent fluid.
(Left) Numerical simulation, (Right) Experimental (source: Metzger,
B. et al. (2007), JFM)
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Sedimentation of cloud of particles Context

Collective dynamics: weak inertia regime (Rea ∼ 10−2)

Figure 6: Snapshots of a cloud of particles settling in a
quiescent fluid. (Left) Numerical simulation, (Right)
Experimental (source: Pignatel, F. et al. (2011), JFM)

Figure 7: Rec vs N0Rea(source: Pignatel, F. et
al. (2011), JFM)
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Sedimentation of cloud of particles Context

Dynamic in turbulent or vortical flow

Figure 8: Sketch showing the preferential sweeping
mechanism for a heavy particle interacting with local flow
vortical structures. (source: Wang, L. and Maxey, M.R.,
JFM (1993))

Figure 9: Experimental and numerical trajectories of a
particle settling in a vortical flow (source: Bergougnoux,
L. et al. (2014), PoF)
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Sedimentation of cloud of particles Context

Collective dynamics in vortical flow

+

Leakage

Life-timeDeformation

Velocity

?
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Sedimentation of cloud of particles Dimensional analysis

Dimensional analysis

Physical quantities

Fluid: ρf , µ, U0 and vortex size k−1 = L/π

Particles: a and ρp

Cloud: radius, Rc, and number of particles, N0

Gravitational acceleration g

6 independent dimensionless numbers

Flow Reynolds number: Rek = ρfU0k−1/µ

Stokes to flow velocity ratio: W = Us/U0

Number of particles N0

Particle Reynolds number: Rea = ρfUSa/µ or alternatively the dimensionless inertial
length k` or `/Rc with ` = a/Rea

Particle to vortex size ratio: P = a/k−1 or alternatively cloud to vortex size ratio:
Q = Rc/k−1

Stokes number, St = 2
9

(ρp +
ρf
2

)a
2kU0
µ

, always kept small in the present experiment
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Sedimentation of cloud of particles Experimental setup

Experimental setup

Cameras

Light

Magnets

Bubble
barriers

Cloud device
injection

Electrode

+
B

j

Particles: Polystyrene (a = 70µm, a = 115µm)
and PMMA particle (a = 175µm)

2 fluids:
1) 83% water + 7% citric acid + 10% UconTM oil
2) 64% water + 36% citric acid

Tabeling et al., Europhys. Lett.(1987)
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Sedimentation of cloud of particles Experimental setup

Two regimes: viscous and weak inertia

Benjamin Marchetti PhD Defense 26/09/2018 12 / 41



Sedimentation of cloud of particles Numerical method

Numerical method: Stokeslet in viscous regime

Validity: Rea � 1

Linearity of equations

Sum of interactions

A cloud of size Q with N0 particles

ˆ̇rαi = V̂ PIV
i (ˆ̇rαi ) +W δi3

+
3

4
PW

N0−1∑
α 6=β

[
δi3
r̂αβ

+
r̂αβi r̂αβ3

(r̂αβ)3

]

with P = a/k−1 and W = Us/U0

Length scale: k−1, Velocity scale: U0

Metzger et al., JFM (2007)

e2

e3

e1

Figure 10: Two spheres settling in a quiescent
viscous fluid (source: Guazzelli, E. and Morris, J.F.,
A Physical Introduction to Suspension Dynamics,
Cambridge University Press (2011))
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Sedimentation of cloud of particles Numerical method

Numerical method: Oseenlet in weak inertia regime

A cloud of size Q with N0 particles

ˆ̇rαi = V̂ PIVi (ˆ̇rαi ) +W δi3 + 3
4PW

N−1∑
α6=β

{
r̂αβi

(r̂αβ)2

[
2`∗

r̂αβ
(1− Ê)− Ê

]
+ Ê

r̂αβ
δi3

}

Ê = exp

[
−
(

1 +
r̂αβ3
r̂

)
r̂αβ

2`∗

]
`∗ = (a/Rea)/Rc

Pignatel et al., JFM (2011)

Figure 11: Oseen solution: flow around a sphere settling in a
quiescent fluid at weak inertia (source: Subramanian and Koch,
JFM (2008))
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Sedimentation of cloud of particles Results & Comparisons

Qualitative comparisons

(a) (b)

Figure 12: Viscous regime.
Experimental (a) and numerical (b) results.

N0 ≈ 2500, Rea = 10−4 and
Rek ≈ 2.9

Motion of the
cloud
The cloud tends to
settle along the
downstream flow
regions.
→ zigzagging motions
Preferential sweeping

The cloud successively
expands and shrinks
when settling through
the successive
elongational portions of
the flow.

Increasing inertia
enhances the cloud
deformation.

(a) (b)

Figure 13: Weak inertia regime.
Experimental (a) and numerical (b) results.

N0 ≈ 500, Rea = 10−2 and
Rek ≈ 13.6
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Sedimentation of cloud of particles Results & Comparisons

Quantitative comparisons: cloud velocity and deformation
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Figure 14: Viscous regime
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Figure 15: Weak inertia regime
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Sedimentation of cloud of particles Results & Comparisons

Leakage of particles
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Break-up
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tUc/Rc

0.0
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Stokeslet - Rek=0.7 - N0=10000
Stokeslet - Rek=2.9 - N0=2500
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Break up

The leakage is intensified by the vortical flows

The leakage is amplified with inertia (using the Oseenlet modeling)
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Sedimentation of cloud of particles Results & Comparisons

Life-time of the cloud

100 101 102

Res
c = (Uc − U0)Rcρf/µ

100

101

102

t b
U

c/
R

c

Quiescent fluid

C1a

C1b

Oseenlet simulations:

N0 = 500

N0 = 1000

C1a

C1b

Experiments:
Quiescent fluid

Quiescent fluid
Quiescent fluid

Re
k
 = 6.8

Re
k
 = 13.6

Quiescent fluid - N
0
 = 1000

Quiescent fluid - N
0
 = 500

Re
k
 = 6.8

Re
k
 = 13.6

Break-up time of the cloud
versus the slip Reynolds
number

The cloud life-time is
reduced by the presence
of vortex flows

Increase of tbUc/Rc with
increasing Resc

Great sensitivity to the
initial position and the
3D velocity field
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Sedimentation of cloud of particles Conclusion

Conclusion

Joint experimental and numerical investigation to examine the
dynamics of clouds of particles settling in cellular flows composed by
counter-rotating vortices

Success of the point-particle simulation by using Stokeslet for the
viscous regime and Oseenlet for the finite inertia regime

The cellular structure affects the cloud aspect ratio, increases particle
leakage, and decreases the cloud life-time (for finite inertia)

(a) (b) (c)
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Sedimentation of flexible fibers Context

Part 2

Sedimentation of a flexible fiber in a
quiescent viscous fluid
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Sedimentation of flexible fibers Context

Sedimentation of a rigid fiber in viscous regime

Drag force ⊥
F drag⊥ = C⊥µU⊥(2`)

C⊥ = 4π
ln(4κ−1)− 1/2

U⊥ =
∆ρga2[ln(4κ−1)− 1/2]

4µ

Drag force ‖
F drag‖ = C‖µU‖(2`)

C‖ = 2π
ln(4κ−1)− 3/2

U‖ =
∆ρga2[ln(4κ−1)− 3/2]

2µ

With,

κ−1 = `
a and U‖/U⊥(κ−1) = C⊥/C‖(κ

−1) ≈ 1.5− 1.7

Cox, JFM (1970)

Benjamin Marchetti PhD Defense 26/09/2018 21 / 41



Sedimentation of flexible fibers Context

Deformation of a flexible fiber: various types of modeling

Slender body theory

Analytical solution for small
deformation

Xu and Nadim, PoF (1994)

Numerical simulation for
`/a� 1

g

Li et al., JFM (2013)

Connected beads

String of connected bead
with bending moments

Cosentino Lagomarsino et al., PRL (2005)

Gear model

Delmotte et al., J. Comp. Phys. (2015)
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Sedimentation of flexible fibers Dimensional analysis

Dimensional analysis

Physical quantities

Fluid: ρf and µ

Fiber: a, `, ρfiber and E

Gravitational acceleration g

4 independent dimensionless numbers

Aspect ratio κ−1 = `/a

Elasto-gravitational number: B =
Gravity force
Elastic force

=
FG(2`)2

EI
With FG = ∆ρ(2`)πa2g and I = πa4/4

or Elasto-viscous number: V =
V iscous force
Elastic force

=
µU(2`)3

EI

Fiber Reynolds number Re =
U`ρf
µ � 1 or Rea =

Uaρf
µ � 1

Fiber Stokes number Stfiber = 1
3

aρsU
ln(κ−1)µ � 1
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Sedimentation of flexible fibers Dimensional analysis

Sedimentation and deformation of flexible fibers

Elasto-gravitational number

B =
Gravity force
Elastic force

=
FG(2`)2

Eπa4/4

with FG = ∆ρ(2`)πa2g

ginitial shape

final
 shape

Figure 16: Definition of δ

X. Xu and A. Nadim, PoF (1994)
M. Cosentino Lagomarsino et al., PRL (2005)
L. Li et al., JFM (2013)
B. Delmotte et al., J. Compu. Phys.(2015)

101 102 103

B
10−2

10−1

100

δ/
`

Xu and Nadim (1994) (κ−1 = 30)
Xu and Nadim (1994) (κ−1 = 100)
Cosentino Lagomarsino et al. (2005) (κ−1 = 30)
Cosentino Lagomarsino et al. (2005) (κ−1 = 100)
Li et al. (2013) (κ−1 = 100)
Delmotte et al. (2015) (κ−1 = 34)

Figure 17: Amplitude of deflection depending on the value of B
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Sedimentation of flexible fibers Experimental setup

Experimental setup with V. Raspa and C. Duprat (LadHyX, Palaiseau) and A.

Lindner and O. Du Roure (PMMH ,Paris)

Observation zone

Launching zone
L3

10 cm

10 cm

d1 d1

d2

d2

g

L2

L1

LED

Panel

Fibers fabricated from silicon-based elastomer (Zermak Elite double 8) and iron molded in
capillary tubes

30 . B . 1000 70 < κ−1 < 300 Re . 0.2 Stfiber < 10−3
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Sedimentation of flexible fibers Experimental setup

Experimental parameters
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(a) (b)

(c) (d)

Position 1 (x1,y1)

Position 3 (x3,y3)

Position 2 (x2,y2)
t>t0

État stationnaire

Parameters measured

δ maximum amplitude of deflection

λ end-to-end distance

U velocity
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Sedimentation of flexible fibers Experimental setup

Chronophotographies in the stationary state

t

Figure 18: Flexible filaments settling in a quiescent viscous fluid for different B; (B = 57; 111; 207; 222; 329; 439; 549);
∆t = 10a/U⊥. (source: V. Raspa and C. Duprat, LadHyX).
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Sedimentation of flexible fibers Numerical method

Bead-spring model

Figure 19: Sketch of a fiber

Position at each time step

ˆ̇rαi =
N−1∑
α 6=β
M̂αβ

ij

(
F̂ βj − ε ∂Û∂r̂βj

)
with ε = 24κ−3/B

M: mobility matrix Rotne-Prager-Yamakawa. Sum of hydrodynamic
interactions of the spheres

F β: external force due to the gravity on each particle

U elastic potential combining stretching and bending force

length scale: a and time scale: a/Us

J. Rotne and S. Prager, J. Chem. Phys. (1969) - H. Yamakawa, J. Chem. Phys. (1970)
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Sedimentation of flexible fibers Numerical method

Comparison of amplitude

101 102 103

B
10−2

10−1

100

δ/
`

Regime I

Regime II Regime III

Xu and Nadim (1994) (κ−1 = 30)
Xu and Nadim (1994) (κ−1 = 100)
Cosentino Lagomarsino et al. (2005) (κ−1 = 30)
Cosentino Lagomarsino et al. (2005) (κ−1 = 100)
Li et al. (2013) (κ−1 = 100)
Delmotte et al. (2015) (κ−1 = 34)
Bead-spring model (κ−1 = 31)
Bead-spring model (κ−1 = 101)

Regime I : linear
deformation with B
Regime II : difference
observed between models
in the intermediate
(reconfiguration) regime

Regime III : saturation at
large B
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Sedimentation of flexible fibers Scaling

Chronophotographies in the stationary state

t

I

II
III
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Sedimentation of flexible fibers Scaling

Three regimes

I

Weak deformation
B < 100

Fdrag ≈ C⊥µU⊥2`

U ≈ U⊥

B = C⊥V
δ
`
∼ B and λ

`
' 2

II

Elastic reconfiguration
100 < B < 500

Fdrag ∼µU`app

∼µU
[
S
µU

]1/2

∼(µU)1/2S1/2

U ≈ V1/2U⊥

B∼V1/2

δ
`
∼ V1/2 and λ

`
∼ V−1/2

III

Large deformation
B > 500

Fdrag ≈ 2C‖µU‖`

U ≈ U‖

B = C‖V

δ
`
' 1 and λ

`
' small < 1
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Sedimentation of flexible fibers Results & Comparisons

Steady shape of the fiber
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B = 33, κ−1 = 98

B = 60, κ−1 = 79

B = 101, κ−1 = 87

B = 111, κ−1 = 91

B = 135, κ−1 = 103

B = 207, κ−1 = 131

B = 265, κ−1 = 81

B = 298, κ−1 = 119

B = 476, κ−1 = 109

B = 487, κ−1 = 149

B = 958, κ−1 = 137

−1.0 −0.5 0.0 0.5 1.0

x/�

Bead-spring model

Slender-body model
B = 33, κ−1 = 98

B = 60, κ−1 = 79

B = 101, κ−1 = 87

B = 111, κ−1 = 91

B = 135, κ−1 = 103

B = 207, κ−1 = 131

B = 265, κ−1 = 81

B = 298, κ−1 = 119

B = 476, κ−1 = 109

B = 487, κ−1 = 149

B = 958, κ−1 = 137

B = 2000, κ−1 = 71

Experiments Bead-spring model

Steady shape scaled by δ

Evolution from a ”V” to a ”U” shape as B increased.
⇒ Good agreement between experiments and simulations
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Sedimentation of flexible fibers Results & Comparisons

Amplitude and end-to-end distance
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Sedimentation of flexible fibers Results & Comparisons

Velocity
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Scaled velocity, U/U⊥, versus B and V for different κ−1

Weak deformation: U ' U⊥
Reconfiguration: U/U⊥ ∼ V1/2(κ−1)

Saturation: U = 1.6U⊥
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Sedimentation of flexible fibers Results & Comparisons

Dimensionless drag versus dimensionless velocity

Dimensionless drag, B, versus dimensionless velocity, V, for different κ−1

Weak deformation: B ≈ C⊥V
Reconfiguration: B ∼ V1/2

Saturation: B ≈ C‖V
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Sedimentation of flexible fibers Conclusion

Conclusion

Joint experimental, analytical, and numerical investigation of the
equilibrium deformation of a flexible fiber settling in a quiescent
viscous fluid

Identification of 3 regimes:

I weak deformation (B < 100)
II intermediate elastic reconfiguration (100 < B < 500)
III large deformation(saturation) (B > 500)

Benjamin Marchetti PhD Defense 26/09/2018 36 / 41



Conclusion & perspectives

Conclusion & perspectives
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Conclusion & perspectives

Conclusion

Sedimentation of cloud of particles in
cellular flows

Joint experimental and numerical
investigation on the cloud dynamic

Success of Stokeslets in viscous regime and
Oseenlets in weak inertia regime

The cloud zigzags around vortices

The cloud aspect ratio changes (vertical or
horizontal expansion)

The leakage is amplified by cellular flows

The life-time is reduced by cellular flows

B. Marchetti et al., JFM (in preparation)
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Conclusion & perspectives

Conclusion

Sedimentation of flexible fibers

Joint experimental, analytical, and
numerical investigation of the
equilibrium deformation

The identification of three regimes
(weak deformation I, intermediate
elastic reconfiguration II and large
deformation III )

B. Marchetti et al., Phys. Rev. Fluids (Accepted)

Study of the dynamic of deformation of
fiber

→ time to reach the final steady shape

V. Raspa et al. (in preparation)

g
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Conclusion & perspectives

Perspectives

Sedimentation of cloud of particles

Effect of an increase of the Reynolds number of the flow (Rek > 15)

Sedimentation of a dilute suspension in cellular flows

Sedimentation of flexible fibers in cellular flows

Individual fiber or a “cloud” of fibers

Preliminary study: flexible fiber in a shearing flow
→ contribution of the flow in the fiber deformation
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Influence of collectif effects

Figure 20: Numerical simulation with
interaction between particles
(accelerated x8)

N0 ≈ 2500
P ≈ 0.02
W ≈ 0.02

Stp < 3 10−4

Rek ≈ 0.7
Rea = 2 10−4

Figure 21: Numerical simulation
without interaction between particles
(accelerated x8)
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Influence of 3D flow field

Figure 22: Numerical simulation with
3D flow field

N0 ≈ 500
P ≈ 0.03
W ≈ 0.05

Stp < 4 10−3

Rek ≈ 13.6
Rea = 2 10−2

Figure 23: Numerical simulation with
2D flow field
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3D trajectory of the cloud
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Oseen interactions

OseenOseen

O(1/r) wake inflow

Stokes

O(1/r2) Source outflow

Figure 24: Oseen interactions for an isolated sphere and for suspension(source: Subramanian and Koch, JFM (2008))
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Interaction with vortices
Perturbed streamlines together with the original PIV flow fields

Figure 25: Stokeslet N0 = 2500 (accelerated x3) Figure 26: Oseenlet N0 = 500
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Leakage of particles
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Particle leakage from the cloud

The rate of leakage decreases as N0 increases

Normalizing the leakage N0 −N by N
1/3
0 produces a collapse of the data
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Newell algorithm

Étape 1 Étape 2 Étape 3

(a) (b) (c)
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Typical deformation of a rectangular plate

Figure 27: Top view photographs of the deforming plate subjected to flow velocities of 0, 2.4, 3.6, 5, 8.6, 14.2 and

16.6 m.s−1 (source: Gosselin et al, JFM (2010)
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Typical deformation of a rectangular plate

Figure 28: Reconfiguration, with a variation of the drag factor with the Cauchy number (source: de Langre et al, Ann. Rev.
Fluid Mech (2008)

F drag ∝ U2+EV CY =
ρfL

3U2

16Bf
R = Fdrag

1
2ρfLWCU2
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Comparisons

Figure 29: Comparison between experimental and numerical shapes for different B and κ−1
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Shape along the time

−1.0 −0.5 0.0 0.5 1.0
x/`

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

h
/`

t

B = 50(a)

−1.0 −0.5 0.0 0.5 1.0
x/`

t

B = 500(b)

−1.0 −0.5 0.0 0.5 1.0
x/`

t

B = 5000(c)

Figure 30: Shape along the time for different B
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Velocity and deformation along the time

0.0 0.5 1.0 1.5 2.0
t/τ90%

0.0

0.2

0.4

0.6

0.8

1.0

U
/U

m
a
x

τ90%
(a)

BSM
Experimental

0.0 0.5 1.0 1.5 2.0
t/τ90%

0.0

0.2

0.4

0.6

0.8

1.0

δ/
δm

a
x

(b)

BSM B = 439, κ−1 = 168

BSM B = 224, κ−1 = 134

BSM B = 184, κ−1 = 142

BSM B = 549, κ−1 = 181

BSM B = 958, κ−1 = 299

B = 184, κ−1 = 142

B = 224, κ−1 = 134

B = 439, κ−1 = 168

B = 549, κ−1 = 181

B = 958, κ−1 = 299

0.0

0.2

0.4

0.6

0.8

1.0

δ/
δm

a
x

Figure 31: U/Umax and δ/δmax along the time
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Time, τ90% to reach the steady shape
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Figure 32: τ90% for different value of B and κ−1
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Fibers settling with different initial angle

Figure 33: Experimental results from V. Raspa and C. Duprat (LadHyX)
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Slender body analytical deflection for small deformation of
a long filament perpendicular to gravity

Net external force density along a slender body in a viscous fluid

fext = 2πµU⊥
ln(κ)2

(
2ln(2)− 2− ln

[
1− (x` )2

])
Final and stationary deformation by solving Euler-Bernoulli equation

EI d
4y
dx4 = fext (with y(0) = 0, y′(0) = 0, y′′(`) = 0, y′′′(`) = 0)

∴
y(x) = − 1

24 [(1+x)4ln(1+x)+(1−x)4ln(1−x)−( 3
16+2ln(2))x4−(1+12ln(2))x2]

Xu and Nadim, PoF (1994)
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