

Sedimentation of particles: collective effects and deformable filaments

PhD Defense

Benjamin Marchetti Supervised by L. Bergougnoux and É. Guazzelli 26/09/2018

Flow of particles in industry

Figure 1: Paper industry (upper left) ; Fiber-reinforced concrete (upper right) ; Paris (2014) (middle)

Flow of particles in nature

Figure 2: Stephanopyxis nipponica (source: Phycokey, University of New Hampshire) ; Langmuir circulation (source: Tejada-Martinez *et al.* (Phys. Scr., 2013)) Figure 3: Eyjafjöll, Island (source: British Met Office (2010))

Sedimentation of ① ② Cloud of particles Flexible fiber in a in vortical flow quiescent viscous fluid

Experimental and numerical investigations

Benjamin Marchetti

PhD Defense

Context

Part 1

Sedimentation of cloud of particles in a vortical flow

Collective dynamics: viscous regime ($Re_a \sim 10^{-4}$)

Figure 4: Flow produced by a cloud of particles (source: Metzger, B. and Guazzelli, E. (2008), Reflets de la physique)

Figure 5: Snapshots of a cloud of particles settling in a quiescent fluid. (Left) Numerical simulation, (Right) Experimental (source: Metzger, B. et al. (2007), JFM)

Collective dynamics: weak inertia regime ($Re_a \sim 10^{-2}$)

Figure 6: Snapshots of a cloud of particles settling in a quiescent fluid. (Left) Numerical simulation, (Right) Experimental (source: Pignatel, F. *et al.* (2011), JFM)

Figure 7: Re_c vs N_0Re_a (source: Pignatel, F. et al. (2011), JFM)

g

Dynamic in turbulent or vortical flow

Figure 8: Sketch showing the preferential sweeping mechanism for a heavy particle interacting with local flow vortical structures. (source: Wang, L. and Maxey, M.R., JFM (1993))

Figure 9: Experimental and numerical trajectories of a particle settling in a vortical flow (source: Bergougnoux, L. *et al.* (2014), PoF)

Collective dynamics in vortical flow

Dimensional analysis

Dimensional analysis

Physical quantities

- Fluid: ρ_f , μ , U_0 and vortex size $k^{-1} = L/\pi$
- Particles: a and ρ_p
- Cloud: radius, R_c , and number of particles, N_0
- Gravitational acceleration g

6 independent dimensionless numbers

- Flow Reynolds number: $Re_k = \rho_f U_0 k^{-1} / \mu$
- Stokes to flow velocity ratio: $W = U_s/U_0$
- Number of particles N_0
- Particle Reynolds number: $Re_a = \rho_f U_S a/\mu$ or alternatively the dimensionless inertial length $k\ell$ or ℓ/R_c with $\ell = a/Re_a$
- Particle to vortex size ratio: $P=a/k^{-1}$ or alternatively cloud to vortex size ratio: $Q=R_c/k^{-1}$
- Stokes number, $St = \frac{2}{9}(\rho_p + \frac{\rho_f}{2})\frac{a^2kU_0}{\mu}$, always kept small in the present experiment

Experimental setup

- Particles: Polystyrene ($a = 70\mu m$, $a = 115\mu m$) and PMMA particle ($a = 175\mu m$)
- 2 fluids:
 - 1) 83% water + 7% citric acid + 10% UconTM oil 2) 64% water + 36% citric acid

Tabeling et al., Europhys. Lett.(1987)

Benjamin Marchetti

PhD Defense

Two regimes: viscous and weak inertia

 $\begin{array}{c} 2200{<}N_{\varrho}{<}20000\\ 2\;10^{{-}3}{<}\,W{<}2\;10^{{-}2}\\ 0.7{<}Re_{k}{<}2.9\\ Re_{a}{\sim}10^{{-}4}\\ 0.01{<}P{<}0.02\;;\;0.2{<}\,Q{<}0.4 \end{array}$

 $P \sim 0.03$; 0.4 < Q < 0.6

Numerical method: Stokeslet in viscous regime

Validity: $Re_a \ll 1$

- Linearity of equations
- Sum of interactions

A cloud of size Q with N_0 particles $\hat{r}_i^{\alpha} = \hat{V}_i^{PIV}(\hat{r}_i^{\alpha}) + W \delta_{i3}$ $+ \frac{3}{4} PW \sum_{\alpha \neq \beta}^{N_0 - 1} \left[\frac{\delta_{i3}}{\hat{r}^{\alpha\beta}} + \frac{\hat{r}_i^{\alpha\beta} \hat{r}_3^{\alpha\beta}}{(\hat{r}^{\alpha\beta})^3} \right]$ with $P = a/k^{-1}$ and $W = U_s/U_0$

Length scale: k^{-1} , Velocity scale: U_0 Metzger *et al.*, JFM (2007)

Figure 10: Two spheres settling in a quiescent viscous fluid (source: Guazzelli, E. and Morris, J.F., A Physical Introduction to Suspension Dynamics, *Cambridge University Press* (2011))

Benjamin Marchetti

PhD Defense

26/09/2018 13 / 41

Numerical method: Oseenlet in weak inertia regime

A cloud of size Q with N_0 particles

$$\hat{r}_{i}^{\alpha} = \hat{V}_{i}^{PIV}(\hat{r}_{i}^{\alpha}) + W\,\delta_{i3} + \frac{3}{4}PW\sum_{\alpha\neq\beta}^{N-1} \left\{ \frac{\hat{r}_{i}^{\alpha\beta}}{(\hat{r}^{\alpha\beta})^{2}} \left[\frac{2\ell^{*}}{\hat{r}^{\alpha\beta}}(1-\hat{E}) - \hat{E} \right] + \frac{\hat{E}}{\hat{r}^{\alpha\beta}}\delta_{i3} \right\}$$

Pignatel et al., JFM (2011)

Figure 11: Oseen solution: flow around a sphere settling in a quiescent fluid at weak inertia (source: Subramanian and Koch, JFM (2008))

Qualitative comparisons

Figure 12: Viscous regime. Experimental (a) and numerical (b) results. $N_0 \approx 2500, Re_a = 10^{-4}$ and $Re_k \approx 2.9$

Motion of the cloud

The cloud tends to settle along the downstream flow regions.

 \rightarrow zigzagging motions Preferential sweeping

The cloud successively **expands** and **shrinks** when settling through the successive elongational portions of the flow.

Increasing inertia enhances the cloud deformation.

Figure 13: Weak inertia regime. Experimental (a) and numerical (b) results. $N_0 \approx 500, Re_a = 10^{-2}$ and $Re_k \approx 13.6$

Quantitative comparisons: cloud velocity and deformation

Figure 14: Viscous regime

Figure 15: Weak inertia regime

Leakage of particles

- The leakage is intensified by the vortical flows
- The leakage is amplified with inertia (using the Oseenlet modeling)

Life-time of the cloud

Break-up time of the cloud versus the slip Reynolds number

- The cloud life-time is reduced by the presence of vortex flows
- Increase of $t_b U_c/R_c$ with increasing Re_c^s
- Great sensitivity to the initial position and the 3D velocity field

Conclusion

- Joint experimental and numerical investigation to examine the dynamics of clouds of particles settling in cellular flows composed by counter-rotating vortices
- Success of the point-particle simulation by using Stokeslet for the viscous regime and Oseenlet for the finite inertia regime
- The cellular structure affects the cloud aspect ratio, increases particle leakage, and decreases the cloud life-time (for finite inertia)

Part 2

Sedimentation of a flexible fiber in a quiescent viscous fluid

Sedimentation of a rigid fiber in viscous regime

Drag force \perp $F_{\perp}^{drag} = C_{\perp}\mu U_{\perp}(2\ell)$ $C_{\perp} = \frac{4\pi}{ln(4\kappa^{-1}) - 1/2}$ $U_{\perp} = \frac{\Delta\rho ga^2[ln(4\kappa^{-1}) - 1/2]}{4\mu}$

Drag force ||

$$F_{\parallel}^{drag} = C_{\parallel} \mu U_{\parallel}(2\ell)$$

$$C_{\parallel} = \frac{2\pi}{ln(4\kappa^{-1}) - 3/2}$$

$$U_{\parallel} = \frac{\Delta \rho g a^{2} [ln(4\kappa^{-1}) - 3/2]}{2\mu}$$

With,

$$\kappa^{-1}=\frac{\ell}{a}$$
 and $U_{\parallel}/U_{\perp}(\kappa^{-1})=C_{\perp}/C_{\parallel}(\kappa^{-1})\approx 1.5-1.7$

Cox, JFM (1970)

Context

Deformation of a flexible fiber: various types of modeling

Slender body theory

• Analytical solution for small deformation

Xu and Nadim, PoF (1994)

• Numerical simulation for $\ell/a \gg 1$

Li et al., JFM (2013)

Connected beads

 String of connected bead with bending moments

Cosentino Lagomarsino et al., PRL (2005)

• Gear model

Delmotte et al., J. Comp. Phys. (2015)

Benjamin Marchetti

Dimensional analysis

Physical quantities

- Fluid: ρ_f and μ
- Fiber: a, ℓ , ρ_{fiber} and E
- Gravitational acceleration g

4 independent dimensionless numbers

- Aspect ratio $\kappa^{-1} = \ell/a$
- Elasto-gravitational number: $\mathcal{B} = \frac{Gravity\ force}{Elastic\ force} = \frac{F_G(2\ell)^2}{EI}$ With $F_G = \Delta \rho(2\ell) \pi a^2 g$ and $I = \pi a^4/4$ or Elasto-viscous number: $\mathcal{V} = \frac{Viscous\ force}{Elastic\ force} = \frac{\mu U(2\ell)^3}{EI}$
- Fiber Reynolds number $Re = \frac{U\ell\rho_f}{\mu} \ll 1$ or $Re_a = \frac{Ua\rho_f}{\mu} \ll 1$
- Fiber Stokes number $St_{fiber} = \frac{1}{3} \frac{a\rho_s U}{ln(\kappa^{-1})\mu} \ll 1$

Sedimentation and deformation of flexible fibers

Benjamin Marchetti

PhD Defense

Experimental setup with V. Raspa and C. Duprat (LadHyX, Palaiseau) and A.

Lindner and O. Du Roure (PMMH ,Paris)

Fibers fabricated from silicon-based elastomer (Zermak Elite double 8) and iron molded in capillary tubes

 $30 \lesssim \mathcal{B} \lesssim 1000$ $70 < \kappa^{-1} < 300$ $Re \lesssim 0.2$ $St_{fiber} < 10^{-3}$

Experimental parameters

Chronophotographies in the stationary state

Figure 18: Flexible filaments settling in a quiescent viscous fluid for different \mathcal{B} ; ($\mathcal{B} = 57$; 111; 207; 222; 329; 439; 549); $\Delta t = 10a/U_{\perp}$. (source: V. Raspa and C. Duprat, LadHyX).

Bead-spring model

Position at each time step $\hat{r}_{i}^{\alpha} = \sum_{\alpha \neq \beta}^{N-1} \hat{\mathcal{M}}_{ij}^{\alpha\beta} \left(\hat{F}_{j}^{\beta} - \varepsilon \frac{\partial \hat{\mathcal{U}}}{\partial \hat{r}_{j}^{\beta}} \right)$ with $\varepsilon = 24\kappa^{-3}/\mathcal{B}$

- *M*: mobility matrix Rotne-Prager-Yamakawa. Sum of hydrodynamic interactions of the spheres
- F^{β} : external force due to the gravity on each particle
- $\bullet \ \mathcal{U}$ elastic potential combining stretching and bending force

length scale: a and time scale: a/U_s

J. Rotne and S. Prager, J. Chem. Phys. (1969) - H. Yamakawa, J. Chem. Phys. (1970)

Benjamin Marchetti

Comparison of amplitude

- Regime I : linear deformation with B
- Regime II : difference observed between models in the intermediate (reconfiguration) regime
- Regime III : saturation at large B

Chronophotographies in the stationary state

Benjamin Marchetti

Steady shape of the fiber

Steady shape scaled by δ

Evolution from a "V" to a "U" shape as \mathcal{B} increased. \Rightarrow Good agreement between experiments and simulations

Amplitude and end-to-end distance

Benjamin Marchetti

Velocity

Dimensionless drag versus dimensionless velocity

Dimensionless drag, \mathcal{B} , versus dimensionless velocity, \mathcal{V} , for different κ^{-1}

- Weak deformation: $\mathcal{B} \approx C_{\perp} \mathcal{V}$
- Reconfiguration: $\mathcal{B} \sim \mathcal{V}^{1/2}$
- Saturation: $\mathcal{B} \approx C_{\parallel} \mathcal{V}$

Conclusion

- Joint experimental, analytical, and numerical investigation of the equilibrium deformation of a flexible fiber settling in a quiescent viscous fluid
- Identification of 3 regimes:
 - I weak deformation ($\mathcal{B} < 100$)
 - II intermediate elastic reconfiguration (100 < B < 500)
 - III large deformation(saturation) (B > 500)

Conclusion & perspectives

Conclusion

Sedimentation of cloud of particles in cellular flows

- Joint experimental and numerical investigation on the cloud dynamic
- Success of Stokeslets in viscous regime and Oseenlets in weak inertia regime
- The cloud zigzags around vortices
- The cloud aspect ratio changes (vertical or horizontal expansion)
- The leakage is amplified by cellular flows
- The life-time is reduced by cellular flows

Conclusion

Sedimentation of flexible fibers

- Joint experimental, analytical, and numerical investigation of the equilibrium deformation
- The identification of three regimes (weak deformation I, intermediate elastic reconfiguration II and large deformation III)
- B. Marchetti et al., Phys. Rev. Fluids (Accepted)
 - Study of the dynamic of deformation of fiber
 - \rightarrow time to reach the final steady shape

Perspectives

Sedimentation of cloud of particles

- Effect of an increase of the Reynolds number of the flow $(Re_k > 15)$
- Sedimentation of a dilute suspension in cellular flows

Sedimentation of flexible fibers in cellular flows

- Individual fiber or a "cloud" of fibers
- Preliminary study: flexible fiber in a shearing flow
 - \rightarrow contribution of the flow in the fiber deformation

Thank you for your attention

This work has been undertaken under the auspices of the ANR project "Collective Dynamics of Settling Particles In Turbulence" (ANR-12-BS09-0017-01), the 'Laboratoire d'Excellence Mécanique et Complexité' (ANR-11-LABX-0092), the Excellence Initiative of Aix-Marseille University - A*MIDEX (ANR-11-IDEX-0001-02) funded by the French Government "Investissements d'Avenir programme"

Influence of collectif effects

Figure 20: Numerical simulation with interaction between particles (accelerated x8)

$$\begin{split} N_0 &\approx 2500 \\ P &\approx 0.02 \\ W &\approx 0.02 \\ St_p < 3 \ 10^{-4} \\ Re_k &\approx 0.7 \\ Re_a &= 2 \ 10^{-4} \end{split}$$

Figure 21: Numerical simulation without interaction between particles (accelerated x8)

Influence of 3D flow field

Figure 22: Numerical simulation with 3D flow field

 $\begin{array}{l} N_0 \approx 500 \\ P \approx 0.03 \\ W \approx 0.05 \\ St_p < 4 \ 10^{-3} \\ Re_k \approx 13.6 \\ Re_a = 2 \ 10^{-2} \end{array}$

Figure 23: Numerical simulation with 2D flow field

3D trajectory of the cloud

Oseen interactions

Interaction with vortices

Perturbed streamlines together with the original PIV flow fields

Figure 25: Stokeslet $N_0 = 2500$ (accelerated x3)

Leakage of particles

Particle leakage from the cloud

- The rate of leakage decreases as N_0 increases
- Normalizing the leakage N_0-N by $N_0^{1/3}$ produces a collapse of the data

Newell algorithm

Typical deformation of a rectangular plate

Figure 27: Top view photographs of the deforming plate subjected to flow velocities of 0, 2.4, 3.6, 5, 8.6, 14.2 and $16.6 m.s^{-1}$ (source: Gosselin et *al*, JFM (2010)

Typical deformation of a rectangular plate

Figure 28: Reconfiguration, with a variation of the drag factor with the Cauchy number (source: de Langre et *al*, Ann. Rev. Fluid Mech (2008)

$$F^{drag} \propto U^{2+E_V}$$
 $C_Y = \frac{\rho_f L^3 U^2}{16B_f}$ $\mathcal{R} = \frac{F^{drag}}{\frac{1}{2}\rho_f LWCU^2}$

Benjamin Marchetti

PhD Defense

26/09/2018 41 / 41

Comparisons

Figure 29: Comparison between experimental and numerical shapes for different ${\cal B}$ and κ^{-1}

Shape along the time

Figure 30: Shape along the time for different ${\cal B}$

Velocity and deformation along the time

Figure 31: U/U^{max} and δ/δ^{max} along the time

Time, $au_{90\%}$ to reach the steady shape

Figure 32: $au_{90\%}$ for different value of ${\cal B}$ and κ^{-1}

Fibers settling with different initial angle

Figure 33: Experimental results from V. Raspa and C. Duprat (LadHyX)

D		
L OB		chott.
тэен	VIAL	пенн
_		

PhD Defense

Slender body analytical deflection for small deformation of a long filament perpendicular to gravity

Net external force density along a slender body in a viscous fluid

$$f^{ext} = \frac{2\pi\mu U_{\perp}}{\ln(\kappa)^2} \left(2\ln(2) - 2 - \ln\left[1 - (\frac{x}{\ell})^2\right]\right)$$

Final and stationary deformation by solving Euler-Bernoulli equation

$$EIrac{d^4y}{dx^4}=f^{ext}$$
 (with $y(0)=0,~y^{\prime\prime}(0)=0,~y^{\prime\prime\prime}(\ell)=0,~y^{\prime\prime\prime}(\ell)=0$)

$$y(x) = -\frac{1}{24}[(1+x)^4ln(1+x) + (1-x)^4ln(1-x) - (\frac{3}{16} + 2ln(2))x^4 - (1+12ln(2))x^2]$$

